Lead frames manufacturers in 2025: Design Features To Optimize For CNC Machining – Incorporating specific design features can significantly improve the efficiency and quality of CNC machined parts. Paying attention to these details can enhance the machining process and result in superior products. Hole and Slot Design – Holes and slots are common features in CNC machined parts. Optimal hole sizes and depths vary depending on the material and intended function. Generally, avoiding extremely deep or very small holes can prevent issues during machining. When designing slots, consider the width, depth, and spacing. Properly designed slots can enhance the part’s functionality and make machining more straightforward. Avoiding overly narrow or deep slots can reduce the risk of tool breakage and ensure smooth machining. Find more information on automotive stamping.
Recycling and Reusing Material: Implementing a recycling and reuse strategy for scrap materials can reduce costs. Recycling metal chips and reusing material where possible can lead to significant savings, especially in high-volume production. In summary, designing for CNC machining involves careful consideration of materials, tolerances, geometries, and tooling. By following best practices and incorporating specific design features, you can optimize the machining process and produce high-quality parts efficiently.
We usually use high-speed steel, cold work die steel, hot work die steel, carbon tool steel, etc., which have the characteristics of high hardness, high heat resistance, high strength, high tensile strength and toughness, and are widely used in various types of mold parts Processing, including forging dies, high-speed cutting, milling, etc. At present, our company has 7 Mitsubishi slow wire cutting machines with a processing accuracy of 0.002mm. They are mainly used to process various precision, small and complex terminals, shrapnel, and bracket molds, focusing on controlling the precision of the products. Discover additional information at dgmetalstamping.com.
After we receive the customer’s drawings, professional engineers will conduct DFM analysis of the product. Design feasibility analysis: Evaluate the feasibility of the mold design, including mold materials, structure and processing technology. By analyzing whether the mold design meets the existing technical conditions and process capabilities, determine its feasibility and provide suggestions for improvement. Manufacturability analysis: Conduct multi-dimensional analysis on the drawings provided by customers to provide customers with a variety of achievable, cost-reducing and efficiency-increasing stamping solutions while ensuring the functional structure of the product.
Part Complexity and Geometries – Complex designs can significantly impact CNC machining time and cost. Simplifying part geometries where possible can lead to more efficient machining. However, complex parts are often necessary, especially in high-tech applications. For complex parts, consider using multi-axis CNC machines that can handle intricate shapes and features. Designing with these capabilities in mind can lead to more efficient and cost-effective manufacturing.
The stamping process is generally divided into forming and separation processes. Fortuna is mainly customized and designed through customer drawings. It generally goes through 10 steps such as DFM Evaluation, Mold Design, Mold Assembly, Sample Submission, and Mass Production to achieve a project. After stamping and forming, we will also perform electroplating, heat treatment, tapping, riveting and other processes on the product according to customer needs to ensure that the product will not be oxidized, deformed and other product defects. Our company currently has 70 stamping equipments, most of which are high-precision equipment imported from Japan. The main brands are Chin Feng, AOMATE, Aida, DOBBY, etc.
When we receive the inquiry, we will provide the quotation according to the drawings (CAD drawings, 3D data, PDF drawings) within 2 days, including mold charge, unit price, MOQ and lead time, etc. The price depends on the product and the customer’s requirements. Customer quotation confirmation – After a discussion, the customer confirms the price and sends us a mold order. Mold deposit prepayment – Next, according to our quotation and customer payment terms, the customer arranges the mold prepayment, most of which is 30%-50% of the entire mold price. At the same time, our R&D department will conduct detailed technical assessments and manufacturability assessments based on customer drawings. In general, we will give reasonable advice based on the mechanical properties of the customer’s raw materials, product structure and other subsequent treatments (such as electroplating, heat treatment and anodizing) to maximize the stability and sustainability of the production.